
Week 6: Lab

Collaboration level 0 (no restrictions). Open notes.

Topics: asymptotic analysis, comparison-based sorting, sorting lower bound, linear-time sorting,
heaps, selection.

1. Recall that in the (smart) SELECT() algorithm described in the notes, the input elements
are divided into groups of 5. In this problem we’ll look at what happens if the input is divided
into groups of 7 element instead.

(a) As before, the algorithm finds a “good” pivot before calling Partition: In this case, for
each group of 7 elements it computes its median, and then finds the median of these
medians. Denote it by x. Using the same argument as in the notes, find out how many
elements in the input are guaranteed to be < x; and how many elements are guaranteed
to be > x, respectively.

(b) Write the recurrence corresponding to this version of the Select() algorithm.

(c) Does this solve to O(n) time?

(d) Based on this, does dividing the input into groups of 7 elements lead to a linear time
SELECT() algorithm?

Note: In general it can be shown that groups of size > 5 lead to a linear time algorithm, and
groups of size < 5 do not lead to a linear algorithm. 5 is the smallest size which leads to a
linear algorithm.

2. Let A be a list of n (not necessarily distinct) integers. Describe an O(n)-algorithm to test
whether any item occurs more than dn/2e times in A.

(a) You may assume that the integers are in a small range, K = O(n).

(b) Come up with a general solution, without making any additional assumptions about the
integers (in particular you may not assume that the range is small). Hint: use Select()

We expect: pseudocode, why is it correct and analysis

1

More practice

1. For each algorithm listed below, give a recurrence that describes its worst-case running time,
and give its worst-case running time in Θ-notation. You do not need to show your work, only
the recurrence and its solution.

• binary search

• merge sort

2. Let A be an array of n elements. Recall that the partition algorithm used by Quicksort runs
in O(n) time and partitions the array into two sub-arrays A1 and A2 such that all elements
in A1 are smaller (or equal) than all elements in A2.

Now consider a partition of A into 3 arrays A1, A2, A3 such that the elements in array A1 are
smaller (or equal) than the elements in array A2, which are all smaller (or equal) than the
elemenst in A3; furthermore, we’ll assume that the partition is so that A1, A2 and A3 have
equal size. We call this a 3-partition.

(a) Let A = 9, 8, 4, 6, 5, 1, 2, 7, 3. Show one possible 3-partition of this array. Note that
it is not specified how to compute a 3-partition, so you only need to show a possible
3-partition, that is, one partition that satisfies the definition.

(b) Describe a generalization of Quicksort that uses a 3-partition. Assume that you are given
a black-box to compute a 3-partition (you do not need to describe how the 3-partition
works, only how the sorting works). For e.g. you could assume that the 3-partition
returns two indices say i, j so that all elements from 0..i are smaller (or equal) than the
elements in i + 1..j, which are smaller (or equal) than the elements in j + 1..r.

//sort a[p..r] using a 3-partition

quicksort(array a, int p, int r)

(c) Give a recurrence for the running time; in your recurrence you can assume that com-
puting a 3-partition on an array of size n runs in O(PARTITION(n)).

2

