
Laura Toma 
Bowdoin College

Week 4
Heaps and Heapsort

Algorithms

(csci 2200)



Week 4 Announcements



Week 4 Overview

• Two new sorting algorithms 

• Heapsort

• The heap (min-heaps and max-heaps)

• Operations: Insert, Delete-Min, Heapify, Buildheap

• Quicksort / Randomized quicksort

• Partition 



The Priority Queue

• A container of objects that have keys (or: priorities)

• Supported operations on a Min-pqueue

• Insert: insert a new object to the queue

• Delete-Min: delete the object with a minimum key value

• Max-pqueues  are symmetrical 



PQueue Applications

• Sorting

• Insert the objects into a priority queue; then call Delete-Min to put the elements in order 

• Run time: n x Insert + n x DeleteMin

• Event managers 

• objects = the events

• key = time the event is scheduled to occur 

• DeleteMin: gives the next scheduled event

• Process scheduling

• objects = processes waiting to be scheduled on the processor 

• key = priority of the process

• DeleteMax: gives the next process to be scheduled 



The binary heap



The heap

• The (binary) heap is standard implementation of a PQ

Operations: 

• Insert(A, element e)

• DeleteMax(A)

• Heapify(A, i)

• Buildheap(A) 

Operations: 

• Insert(A, element e)

• DeleteMin(A)

• Heapify(A, i)

• Buildheap(A) 

Min-heaps Max-heaps

symmetrical

Run time: O( lg n)

O(n)



The min-heap 

An array:  viewed as corresponding to a complete binary tree (except last level, which is filled from 

left to right)

Heap property:  for all nodes v,   priority(v)  <=   priority of children(v)

2 4 3 9 5 11 4 15 14 19A

n=10

2

4 3

9 5 11 4

15 14 19



Properties 

1. The smallest element is in the root 

2. The height of a heap of n  elements is 

3. The indices of the children and parent of a node 
can be calculated (without storing pointers).  For 
node at index i:  

• left(i) = 2 i

•right(i) =  2i+1

•parent(i) = i/2

Θ(lg n)

1 2 3 4 5 6 7 8 9
A

n=10

10

1

2

1098

7654

3



Operations supported by a min-heap 

• insert(A, e):        A is a heap; Insert element e and maintain A as a heap.

• deleteMin(A):     A is a heap; delete the min element in A and return it. Maintain A as a heap. 

• peak(A):             A is a heap; return the min element in A

• Supporting operation

• heapify(A, i):      left(i) is a heap and right(i) is a heap. Make a heap under i.



peak(A)

A

2
4

191415

41159

3

n=10
  2     4      3    9      5    11     4    15   14   19

this is the smallest element



Inserting in a heap 

A

2
4

191415

41159

3

n=10
  2     4      3    9      5    11     4    15   14   19

Insert(A,  3)



Inserting in a heap 

A

n=10

2
4

191415

41159

3

  2     4      3    9      5    11     4    15   14   19

Insert(A,  3)

3

3

n=11



Inserting in a heap 

A

2
4

191415

41159

3

  2     4      3    9      5    11     4    15   14   19

Insert(A,  3)

3

3

n=11

Heap property 

violated



Inserting in a heap 

A

2
4

191415

41159

3

  2     4      3    9      5    11     4    15   14   19

Insert(A,  3)

3

3

n=11

Heap property 

violated



A

2
4

191415

41159

3

Inserting in a heap 

  2     4      3    9      5    11     4    15   14   19

Insert(A,  3)

3

3

n=11

5

3

3 5

Heap property 

violated



Inserting in a heap 

A

2
4

191415

41159

3

  2     4      3    9      5    11     4    15   14   19

Insert(A,  3)

3

3

n=11
53

5

3
Heap property 


violated



Insert(A, e)

1. Add e at the end of the heap

2. “Bubble-up” to restore heap property: swap e 

with its parent, and repeat 

A

2
4

191415

41159

3

Inserting in a heap 

  2     4      3    9      5    11     4    15   14   19

Insert(A,  3)

3

3

n=11
53

5

3

3

4

43

Heap property 

violated



A

2
4

191415

41159

3

Inserting in a heap 

  2     4      3    9      5    11     4    15   14   19

Insert(A,  3)

3

3

n=11
53

5

3

3

4

43

Why is this correct?

Insert(A, e)

1. Add e at the end of the heap

2. “Bubble-up” to restore heap property: swap e 

with its parent, and repeat 

heap heap

heap



Inserting in a heap 

Insert(A, e)

1. Add e at the end of the heap

2. “Bubble-up” to restore heap property: swap e 

with its parent, and repeat 

A

2
4

191415

41159

3

  2     4      3    9      5    11     4    15   14   19

Insert(A,  3)

3

3

n=11

Analysis: O(height) = O(lg n)





DeleteMin in a heap 

A n=10

2

4

191415

41159

3

  2     4      3    9      5    11     4    15   14   19

DeleteMin(A)



DeleteMin in a heap 

A n=10

4

191415

41159

3

         4      3    9      5    11     4    15   14   19

DeleteMin(A)

1. Save the element in the root 

(will return it)



A n=10

4

191415

41159

3

 19     4     3    9      5    11    4    15   14    19

DeleteMin(A) 19

n=9

2.  Take the last element and 

put it in the root 

DeleteMin in a heap 



DeleteMin in a heap 

A n=9

4

191415

41159

3

 19    4      3    9      5    11     4    15   14   19

19

heap property violated at root

heap heap
3. “Bubble-down” to restore 

heap property: swap root with 

its smallest child,  and repeat 



DeleteMin in a heap 

A n=9

4

191415

41159

3

19

 19    4      3    9      5    11     4    15   14   19

3. “Bubble-down” to restore 

heap property: swap root with 

its smallest child,  and repeat 

heap property violated at root



DeleteMin in a heap 

A n=9

4

191415

41159

19

  3     4    19    9      5    11     4    15   14   19

3 heap property violated

3. “Bubble-down” to restore 

heap property: swap root with 

its smallest child,  and repeat 



DeleteMin in a heap 

A n=9

4

191415

41159

19

3

  3     4    19    9      5    11     4    15   14   19

3. “Bubble-down” to restore 

heap property: swap root with 

its smallest child,  and repeat 

heap property violated



DeleteMin in a heap 

A n=9

4

191415

191159

4

3

  3     4     4     9      5     11   19    15   14   19

3. “Bubble-down” to restore 

heap property: swap root with 

its smallest child,  and repeat 

DONE!



DeleteMin in a heap 

A n=9

4

191415

191159

4

3

DeleteMin(A)

1. Save the element in the root 

(will return it)

2.Take the last element and put 

it in the root 

3. “Bubble-down” to restore 

heap property: swap root with 

its smallest child,  and repeat 

  3     4     4     9      5     11   19    15   14   19

DONE!

Analysis O(lg n) 



Heapify(A, i):   makes a heap under i

heap heap

i

A
i
x

• Input: 

• i is an index in A, 

• the subtrees rooted at left(i) and right(i) both satisfy heap property, but heap property is violated 
at node i

•Output:  the subtree rooted at i satisfies heap property

1 ≤ i ≤ n



Example  

A n=10

8

191415

59

         8             9      5                  15   14   19

heapify(A, 2)

1 2 3 4 5 6 7 8 9 10

5

191415

89



Heapify(A, i)

//find smallest of its children

• l = left(i),   r = right(i)

• if  l <= heapsize(A) and A[l] < A[i]:  smallest = l,  else smallest = i

• if (r <= heapsize(A) and A[r] < A[smallest] : smallest = r

//swap and recurse

• if smallest ! = i:   

•exchange A[i] with A[smallest]

•Heapify(A, smallest)

i



A n=10  2     4      3    9      5    11     4    15   14   19

2

4

191415

41159

3

19

Can we implement deleteMin in terms of heapify?



deleteMin(A)

• if heapsize(A) < 1:  error “heap underflow” 

•min = A[1]

•A[1] = A[heapsize(A)]

•heapsize(A) - -  

•Heapify(A, 1)

•return min 

A n=10  2     4      3    9      5    11     4    15   14   19

2

4

191415

41159

3

19



Sorting with a heap



Sorting with a heap

• The problem: A is an array.  Sort A using a heap. 

• How? 



Sorting with a heap

• The problem: A is an array.  Sort A using a heap. 

• We could traverse the elements in A and insert them in a heap, then deleteMin one at a time.  

sort-with-a-heap(A)

• H = empty heap 

• for i=0 to n-1:    insert(H, A[i])

• for i=0 to n-1:    A[i] = deleteMin(H)  



Sorting with a heap

• The problem: A is an array.  Sort A using a heap. 

• We could traverse the elements in A and insert them in a heap, then deleteMin one at a time.  

sort-with-a-heap(A)

• H = empty heap 

• for i=0 to n-1:    insert(H, A[i])

• for i=0 to n-1:    A[i] = deleteMin(H)  

• This is great, but it’s not in place.

• Can we sort with a heap in place? 

Analysis: n x insert + n x deleteMin = O(n lg n) 



Sorting with a heap in place

• Ingredient 1: making an array into a heap in place 

4 3 5 7 4 2 8 1A

3

1

47 2 8

4

5

buildheap(A)

Input:    A is an array 

Output: A is a heap 



Sorting with a heap in place

• Ingredient 1: making an array into a heap in place 

4 3 5 7 4 2 8 1Abuildheap(A)

Input:    A is an array 

Output: A is a heap

//build a heap gradually, bottom up 

• for i = n/2 down to 1: Heapify (A, i)
3

1

47 2 8

4

5



Buildheap(A)

3

1

47 2 8

4

5

Heapify(A, 4)

Heapify(A, 3)Heapify(A, 2)

Heapify(A, 1)



Buildheap(A)

3

1

47 2 8

4

5

Heapify(A, 4)



3

7

41 2 8

4

5

Buildheap(A)

Heapify(A, 4)



3

7

41 2 8

4

5

Buildheap(A)

Heapify(A, 3)



3

7

41 5 8

4

2

Buildheap(A)

Heapify(A, 3)



3

7

41 5 8

4

2

Buildheap(A)

Heapify(A, 2)



1

7

43 5 8

4

2

Buildheap(A)

Heapify(A, 2)



1

7

43 5 8

4

2

Buildheap(A)

Heapify(A, 1)



3

7

44 5 8

1

2

Buildheap(A)

Heapify(A, 1)



4 3 5 7 4 2 8 1A 1 3 2 4 4 5 8 7A

buildheap(A)

• for i = n/2 down to 1: Heapify (A, i)

Analysis: It can be shown that this runs in overall O(n)



Heapsort(A) in place

Run time:  Buildheap + n x Delete-Max ==> O(n lg n)

Idea: use a max pqueue 



Heaps: summary

• Insert(A, e)

• Delete-Min()

• Heapify(A, i)

• Buildheap(A)

• Heapsort (A)   

• Note that cannot Search efficiently  in a heap  

• Generalize to 3-heaps, …. d-heaps

O(lg n)

O(n)
O(n lg n), in place

Heaps are arrays + heap property


