
Rod cutting summary

• The problem: Given a rod of length n and a table of prices p[i] for i = 1, 2, 3, ..., n, determine
the maximal revenue obtainable by cutting the rod in integer pieces and selling them.

• Notation and choice of subproblem: For an integer x, we denote by maxrev(x) the maximal
revenue obtainable by cutting up a rod of length x. To solve our problem we call maxrev(n).

• For simplicity, we’ll sssume the price array p[] and the length of the rod n are global variables

• Recursive definition of maxrev(x):

@returns the max revenue obtainable from a rod of length x, where x is an int
maxrev(x)

1 if (x ≤ 0): return 0
2 maxopt = −∞
3 for i = 1; i ≤ x; i = i + 1
4 // first cut of length i
5 opt = p[i] + maxrev(x− i)
6 if opt > maxopt : maxopt = opt
7 return maxopt

• Why correct? It tries all possibilities for first cut and recurses on the rest—which is correct
because it has optimal substructure (why?)

• Dynamic programming, recursive (top-down) with memoization:

Create a table of size n + 1, where table[i] will store (the result of) maxrev(i). Initialize
table[i] = 0 for all i = 0..n. Call maxrevDP (n, table) and return the result.

@returns the max revenue obtainable from a rod of length x, where x is an int
maxrevDP(x, table)

1 if (x ≤ 0): return 0
2 if table[x] 6= 0: return table[x]
3 maxopt = −∞
4 for i = 1; i ≤ x; i = i + 1
5 opt = p[i] + maxrevDP(x− i, table)
6 if opt > maxopt : maxopt = opt
7 table[x] = maxopt
8 return maxopt

Running time for maxrevDP(n) : Θ(n2)

1



Algorithms: csci2200 Laura Toma, Bowdoin College

• Dynamic programming, iterative (bottom-up):

@returns the max revenue obtainable from a rod of length n
maxrevDP iterative()

1 create table[0..n] and initialize table[i] = 0 for all i = 0..n
2 for (x = 1;x ≤ n;x = x + 1)
3 // find optimal revenue for length x
4 for i = 1; i ≤ x; i = i + 1
5 // first cut is of length i
6 table[x] = max{table[x], p[i] + table[x− i]}
7 return table[n]

Running time for maxrevDP iterative(n) : Θ(n2)

• Computing full solution (without storing additional information while filling the table):

@param: table[0..n] as computed above, where table[i] stores the maxrev obtainable from
a rod of length i.
@return: prints the set of cuts corresponding to table[n]
findCuts(table)

1 curLength = n
2 while (curLength > 1)
3 for i = 1; i ≤ curLength; i = i + 1
4 // is the value in table[currLength] achieved via a first cut of length i ?
5 if table[curLength] = p[i] + table[curLength− i]
6 print that a cut of length i was made
7 curLength = curLength− i

Running time: Θ(n2), no extra space

• Computing full solution (with storing additional information while filling the table):

In addition to table[0...n] we use an array firstcut[0..n] where firstcut[i] will store the first
cut in maxrev(i). We can extend the maxrevDP (either recursive or iterative) to also fill in
firstcut[x]: when determining that the maximum revenue for x is achieved with the first cut
being of length i, we will set firstcut[x] = i.

@param: table[0..n] as computed above, where table[i] stores the maxrev obtainable from
a rod of length i.
@param: firstcut[0..n] where firstcut[i] stores the first cut in maxrev(i).
@return: prints the set of cuts corresponding to table[n]
findCuts(table, firstCut)

1 curLength = n
2 while (curLength > 1)
3 print that a cut of length firstCut[curLength] was made
4 curLength = curLength− firstCut[curLength]

Running time: Θ(n), with Θ(n) extra space for firstcut[]

2


