Rod cutting summary

- The problem: Given a rod of length n and a table of prices $p[i]$ for $i=1,2,3, \ldots, n$, determine the maximal revenue obtainable by cutting the rod in integer pieces and selling them.
- Notation and choice of subproblem: For an integer x, we denote by maxrev (x) the maximal revenue obtainable by cutting up a rod of length x. To solve our problem we call maxrev (n).
- For simplicity, we'll sssume the price array $p[]$ and the length of the rod n are global variables
- Recursive definition of $\operatorname{maxrev}(x)$:

```
@returns the max revenue obtainable from a rod of length \(x\), where \(x\) is an int
\(\operatorname{maxREV}(x)\)
if \((x \leq 0)\) : return 0
    maxopt \(=-\infty\)
    for \(i=1 ; i \leq x ; i=i+1\)
        // first cut of length \(i\)
        \(o p t=p[i]+\operatorname{maxrev}(x-i)\)
        if opt \(>\) maxopt \(:\) maxopt \(=o p t\)
    return maxopt
```

- Why correct? It tries all possibilities for first cut and recurses on the rest-which is correct because it has optimal substructure (why?)
- Dynamic programming, recursive (top-down) with memoization:

```
Create a table of size \(n+1\), where table \([i]\) will store (the result of) maxrev( \(i\) ). Initialize
\(\operatorname{table}[i]=0\) for all \(i=0 . . n\). Call maxrevDP(n,table) and return the result.
@returns the max revenue obtainable from a rod of length \(x\), where \(x\) is an int
MAXREVDP \((x\), table \()\)
if \((x \leq 0)\) : return 0
    if table \([x] \neq 0\) : return table \([x]\)
    maxopt \(=-\infty\)
    for \(i=1 ; i \leq x ; i=i+1\)
        opt \(=p[i]+\operatorname{maxrevDP}(x-i\), table \()\)
    if opt \(>\) maxopt \(:\) maxopt \(=\) opt
    table \([x]=\) maxopt
    return maxopt
```

Running time for maxrevDP $(n): \Theta\left(n^{2}\right)$

- Dynamic programming, iterative (bottom-up):

```
@returns the max revenue obtainable from a rod of length \(n\)
maxrevDP_iterative()
    create table \([0 . . n]\) and initialize table \([i]=0\) for all \(i=0 . . n\)
    for \((x=1 ; x \leq n ; x=x+1)\)
        // find optimal revenue for length \(x\)
        for \(i=1 ; i \leq x ; i=i+1\)
            // first cut is of length \(i\)
            table \([x]=\max \{\) table \([x], p[i]+\operatorname{table}[x-i]\}\)
    return table[n]
```

Running time for maxrevDP_iterative (n) : $\Theta\left(n^{2}\right)$

- Computing full solution (without storing additional information while filling the table):

```
@param: table \([0 . . n]\) as computed above, where table \([i]\) stores the maxrev obtainable from
a rod of length \(i\).
@return: prints the set of cuts corresponding to table \([n]\)
FindCuts(table)
    cur Length \(=n\)
    while (curLength > 1)
        for \(i=1 ; i \leq\) curLength \(; i=i+1\)
            // is the value in table[currLength] achieved via a first cut of length \(i\) ?
            if table \([\) cur Length \(]=p[i]+\) table \([\) cur Length \(-i]\)
                    print that a cut of length \(i\) was made
                    curLength \(=\) curLength \(-i\)
```

Running time: $\Theta\left(n^{2}\right)$, no extra space

- Computing full solution (with storing additional information while filling the table):

In addition to table $[0 \ldots . . n]$ we use an array firstcut $[0 . . n]$ where firstcut $[i]$ will store the first cut in $\operatorname{maxrev}(i)$. We can extend the maxrevDP (either recursive or iterative) to also fill in firstcut $[x]$: when determining that the maximum revenue for x is achieved with the first cut being of length i, we will set firstcut $[x]=i$.

```
@param: table[0..n] as computed above, where table[i] stores the maxrev obtainable from
a rod of length i.
@param: firstcut[0..n] where firstcut [i] stores the first cut in maxrev(i).
@return: prints the set of cuts corresponding to table[n]
FIndCuTs(table, firstCut)
curLength = n
while (curLength > 1)
    print that a cut of length firstCut[curLength] was made
    curLength = curLength - firstCut[curLength]
```

Running time: $\Theta(n)$, with $\Theta(n)$ extra space for firstcut[]

