Practice problems
 Greedy

Collaboration level 0 (no restrictions). Open notes.

1. Pharmacist problem: A pharmacist has W pills and n empty bottles. Bottle i can hold p_{i} pills and has an associated cost c_{i}. Given $W,\left\{p_{1}, p_{2}, \ldots, p_{n}\right\}$ and $\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$, you want to store all pills using a set of bottles in such a way that the total cost of the bottles is minimized. Note: If you use a bottle you have to pay for its cost no matter if you fill it to capacity or not.
Find the minimum cost for storing the W pills using the bottles.
(a) Explain how the problem has optimal substructure.

Answer: Consider an optimal solution O, and consider one of the bottles in it. Let's say this is bottle k, and it holds p_{k} pills. Then we know that the remaining bottles in O must be the optimal way to store \qquad
(b) Define a subproblem and give pseudocode for a recursive function to compute it.
(c) Extend your recursive pseudocode above to a recursive dynamic programming algorithm with memoization and analyze its running time.
2. Greedy pharmacist? Someone proposes the following greedy strategy to solve the pharmacist problem (above): Pick the bottle with the smallest cost-per-pill, and recurse on the remaining pills with the remaining bottles. Show that this greedy strategy is not correct by giving a counterexample.
3. A different pharmacist problem: A pharmacist has W pills and n empty bottles, where all bottles cost the same and bottle i can hold p_{i} pills. Find the minimum cost for storing the W pills using the bottles.

